Roll	No):																						
		-	-	-	-	-	-	-	•	•		 -	-		-	17	9	Ξ,						

Hi-Tech Institute of Engineering & Technology DEPARTMENT OF APPLIED SCIENCES Course - B.Tech First Year

(SEM- I) ODD SEMESTER PUT EXAMINATION 2022-23

Subject Code:BAS-103

MODEL PAPER - 2. Subject Name: ENG.MATHS-I

Faculty Name: Mr. ManishAgg, Mr. Surendra Singh

Time: 3: 00 Hours

Total Marks: 70

SECTION-A

1. Attempt all question in brief.

2x 7 = 14

Q.No	Attempt all questions.	Marks	CO
1.	Find the characteristic equation if $A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$	2	1
2.	Find the value of $\frac{\partial^3 u}{\partial x \partial y \partial z}$ if $u = e^{xyz}$.	2	2
3.	Find first order derivatives of $u = \log(x^2 + y^2)$.	2	2
4.	If $u=x^2, v=y^2$ find $\frac{\partial(u,v)}{\partial(x,y)}$	2	3
5.	Examine $f(x, y) = x^3 + y^3 - 3xy$ for maximum and minimum values.	2	3
6.	Evaluate $\int_0^1 \int_0^{\sqrt{ay}} xy dx dy$	2	4
7.	If $\emptyset = 3x^2y - y^3z^2$ find the grad \emptyset at the point $(1,-2,-1)$.	2	5

SECTION-B

2. Attempt any three of the following:

 $7 \times 3 = 21$

Q.No	Ouestion	Marks	CO
a.	Compute the inverse of the matrix $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ by employing elementary row transformation.	7	1
b.	If y=sin (a sin ⁻¹ x), prove that $(1-x^2) y_{n+2} - (2n+1) xy_{n+1} - (x^2-a^2) y_n = 0$, Also find y_n at $x=0$	7	2
c.	Expand e^x . cos y near the point $(1, \pi/4)$	7	3
d.	Find the volume of solid bounded by the surface x=0, y=0, z=0 and x+y+z=1	7	4
e.	Given the vector field $V=(x^2-y^2+2xz)i+(xz-xy+yz)j+(z^2+x^2)k$ find curl V.Show that the vector given curl V at $P(1,2,-3)$ and $P_1(2,3,12)$ are orthogonal.	7	5

SECTION-C

3. Attempt any one parts of the following:

7*1 = 7

D. I KELL	mpt any one parts or the							
Q.No	Question						Marks	CO
a.	[1	-	2	1	-1		7	1
	Reduce the matrix $A = 1$	1	1	-2	3	to normal form and hence find its rank.	100	
	4	1		-5	8			

b.	Test the consistency of the following system of liner equation and hence find the solution $4x-y=12$, $-x+5y-2z=0$, $-2y+4z=-8$.	7	1
----	---	---	---

4. Attempt any one parts of the following:

7 * 1	-	7
	_	- /

Q.No	Question	Marks	CO
a.	If $u = tan^{-1} \frac{x^3 + y^3}{\sqrt{x} + \sqrt{y}}$, Find the value of	7	2
70	$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{25}{16} \sin 4u - \frac{5}{4} \sin 2u$		
b.	If $\frac{x^2}{a^2 + u} + \frac{y^2}{b^2 + u} + \frac{z^2}{c^2 + u} = 1$ prove	7	2
	$2\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}\right) = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2$	4.2	

5. Attempt any one parts of the following:

7	*1	=	7

Q.No	Question	Marks	CO
a.	Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.	7	3
b.	If $u = x+2y+z$, $v = x-2y+3z$, $w = 2xy-xz+4yz-2z^2$ Show that they are functionally related and find the relation.	. 7	3

6. Attempt any one parts of the following:

7*1	-7
/	- /

Q.No	Question	Marks	CO
a.	Show that by change order of integration $\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx = \frac{16a^2}{3}.$	7	4
b.	Evaluate $\iint \frac{dxdy}{(\sqrt{(1-x)}\sqrt{(1-y)})}$	7	4

7. Attempt any one parts of the following:

7+1	_ 7
12	= 7

Q.No	Question	Marks	CC
a.	Using Green's theorem to evaluate $\int_{c} \left[\left(x^{2} y \right) dx + \left(x^{2} \right) dy \right]$ where c is the boundary described counter clockwise of the triangle with vertices $(0,0)$, $(1,0)$, $(1,1)$.	7	5
b.	Use Green's Theorem to evaluate $\int (x^2 + xy)dx + (x^2 + y^2)dy$ is the square formed by the lines $y=\pm 1$, $x=\pm 1$.	7	5