MODEL TEST PAPER-- 1

Roll No: \qquad

Hi-Tech Institute of Engineering \& Technology DEPARTMENT OF BCA

Course-BCA
(SEM - 2) EVEN SEMESTER MODEL TEST PAPER 1
SUBJECT - Mathematics

Subject Code: BCA-201
TIME: 3 hrs
Maximum Marks:75
Note: Attempt all the sections as per instructions.

SECTION A

Note: Attempt all questions. $\quad 3 * 5=15$

1. Define symmetric and Anti symmetric relation.
2. If A and B are two sets such that $n(A)=27, n(B)=35$ and $n(A \cup B)=50$. Find $n(A \cap B)$.
3. If $A=\{1,2,3,4\}, B=\{2,4,6\}, C=\{1,2,5\}$. Compute $(A-B) \times(B-C)$.
4. Show that the set of all factors of 12 under divisibility forms a lattics.
5. Show that the planes $3 x-2 y+z 17=0$ and $4 x+3 y-6 z-25=0$ are at right angle.

SECTION B

Note: Attempt any two questions.
$7.5^{*} 2=1$
6. Evaluate $\int_{0}^{3} \int_{1}^{2} x y(1+x+y) d x d y$
7.

Find the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$.
8. Define composition function. Let $\mathrm{f}: \mathrm{N} \rightarrow R$ s.t $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-3$ and $\mathrm{g}: \mathrm{Z} \rightarrow R$ s.t. $\mathrm{g}(\mathrm{x})=(\mathrm{x}-3) / 2$, then find formula for gof: $\mathrm{N} \rightarrow R$.

SECTION C

Note: Attempt any three questions.
$15 * 3=45$
9. (i)Change the order of integration
$\int_{0}^{a} \int_{x}^{\frac{a^{2}}{x}} \varphi(x, y) d x d y$.
(ii) Evaluate the double integral
$\int_{-a}^{a} \int_{-b \backslash a \sqrt{a^{2}-x^{2}}}^{b \backslash a \sqrt{a^{2}-x^{2}}}(x+y)^{2} \mathrm{dxdy}$
10.Use Distributive laws to prove the following:
(i) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(ii) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
11. Find the equation of the plane passing through the four points $(0,-1,-1),(4,5,1),(3,9,4)$ and $(-4,4,4)$.
12.(i)Discuss the maxima or minima of the function

$$
\mathrm{u}=\mathrm{xy}+\left(\frac{a^{3}}{x}\right)+\left(\frac{a^{3}}{y}\right)
$$

(ii) Show that $\sin x(1+\cos x)$ is a maximum at $x=\pi / 3$
13. Let $N=\{1,2,3,4 \ldots .$.$\} and a relation is defined in N \times N$ as follows (a, b) is related to (c, d) iff $a d=b c$, then show whether R is a equivalence relation or not.

