MODEL TEST PAPER-- 1

Roll No:

Hi-Tech Institute of Engineering & Technology

DEPARTMENT OF BCA

Course- BCA

(SEM - 2) EVEN SEMESTER MODEL TEST PAPER 1

SUBJECT - Mathematics

Subject Code: BCA-201

TIME: 3 hrs

Maximum Marks:75

Note: Attempt all the sections as per instructions.

SECTION A

Note: Attempt all questions. 3*5=15

- 1. Define symmetric and Anti symmetric relation.
- **2.** If A and B are two sets such that n(A)=27, n(B)=35 and $n(A\cup B)=50$. Find $n(A\cap B)$.
- **3.** If A= {1,2,3,4}, B = {2,4,6}, C = {1,2,5}. Compute (A-B) x (B-C).
- 4. Show that the set of all factors of 12 under divisibility forms a lattics.
- 5. Show that the planes 3x-2y+z17 = 0 and 4x+3y-6z-25 = 0 are at right angle.

SECTION B

Note: Attempt any two questions.

6. Evaluate $\int_{0}^{3} \int_{1}^{2} xy(1 + x + y) dx dy$

Find the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$.

8. Define composition function. Let $f: N \to R$ s.t f(x)=2x-3 and $g: Z \to R$ s.t. g(x)=(x-3)/2, then find formula for gof: $N \to R$.

SECTION C Note: Attempt any three questions.

9. (i) Change the order of integration

$$\int_0^a \int_x^{\frac{a^2}{x}} \varphi(x, y) dx dy.$$

(ii) Evaluate the double integral

$$\int_{-a}^{a}\int_{-b\backslash a\sqrt{a^2-x^2}}^{b\backslash a\sqrt{a^2-x^2}}(x+y)^2 dxdy$$

15*3=45

7.5*2=1

7.

10.Use Distributive laws to prove the following:

(i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

(ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

11. Find the equation of the plane passing through the four points (0,-1,-1), (4,5,1), (3,9,4) and (-4,4,4).

12.(i)Discuss the maxima or minima of the function

$$u=xy+(\frac{a^3}{x})+(\frac{a^3}{y})$$

(ii) Show that sinx(1+cosx) is a maximum at $x=\pi/3$

13.Let N = $\{1,2,3,4....\}$ and a relation is defined in N×N as follows (a,b) is related to (c,d) iff ad=bc, then show whether R is a equivalence relation or not.