Roll No:

Hi-Tech Institute of Engineering & Technology

DEPARTMENT OF MCA

Course MCA

(SEM- II) MODEL PAPER 2022-23

Subject Code: KCA201

Subject Name: TAFL

Faculty Name: PRIYANKA SINGH

Time: 1:30 Hours

Total Marks: 50

2x 5 = 10

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. SECTION-A

1. Attempt all question in brief.

Q.No	Question	Marks	CO
a.	Define regular set with example.	2	1
b.	Define Alphabet, String, Language.	2	1
C.	Define undecidable problem with an example.	2	2
d.	Explain Arden`s theorem.	2	2
e.	Define context free grammar.	2	3
f.	What do you understand by Derivation Trees and Ambiguity?	2	3
g.	Discuss about Deterministic Context Free Languages.	2	4
h.	Tell closure properties of CFL.	2	4
i.	What is Recursive and Recursively Enumerable language?	2	5
j.	Discuss halting problem in detail.	2	5

SECTION-B

2. Attempt any FOUR of the following:

5x4=20

						JXT-20	
Q.No	Question				Marks	CO	
a.	Convert the given Moore machine into its equivalent Mealy machine.				5	1	
	Q	a	b	Output(λ)			
	q0	q0	q1	0			
	q1	q2	q0	1			
	q2	q1	q2	2			
b.	Find the language generated by a grammar					5	2
	G=({S},{a,b},{S->aSb, S->ab},S)						

C.	Show that the language $\{0n1n2n/n > = 1\}$ is not a Context	5	3		
	free language.				
d.	Convert the following grammar to a PDA that accepts the same language. 1. $S \rightarrow 0S1 \mid A$ 2. $A \rightarrow 1A0 \mid S \mid \epsilon$	5	4		
e.	construct a Turing Machine for checking the palindrome of the string of even llenght over (a,b).	5	5		

SECTION-C

3. Attempt any ONE part of the following:

2x10 = 20

Q.No	Question	Marks	CO
a.	Construct an NFA equivalent to the regular expression	10	1
	((0+1)(00+11)(0+1))*		
b.	Show that the Context free languages are closed under union,	10	1
	concatenation and Kleene closure		

4.. Attempt any ONE part of the following:

2x10 = 20

Q.No	Question	Marks	CO
a.	Discuss the Pumping Lemma for the regular expression.	10	2
b.	Construct the regular expression for the given DFA	10	2
	Start q_1 1 q_2 0 q_3 0.1		

5. Attempt any ONE part of the following:

2x10 = 20

Q.No	Question	Marks	CO
a.	Construct an equivalent grammar G in CNF for the grammar	10	3
	G1=({S,A,B}, {a,b}, {S bA / aB, A bAA / aS / a, B aBB / bS / b}, S)		
b.	Find grammar in GNF equivalent to the grammar	10	3
	E->E+T/T		
	T->T*F/F		
	F->(E)/a		

6. Attempt any ONE part of the following:

2x1	0	=	20
	•	_	-v

Q.No	Question	Marks	CO
a.	Differentiate between deterministic and non-deterministic PDA.	10	4
b.	How PDA and CFG are equivalent? Explain the procedure to	10	4
	conversion of PDA to its equivalent CFG.		

7. Attempt any ONE part of the following:

2x10 = 20

Q.No	Question	Marks	CO
a.		10	5
b.	Explain the linear bounded automata with an example. Also discuss about context sensitive's languages with an example.	10	5