Roll No:	•••••
-----------------	-------

2x 10 = 20

5

4x10 = 40

10

Hi-Tech Institute of Engineering & Technology

DEPARTMENT OF COMMERCE & MANAGEMENT Course MBA

(SEM-6th) EVEN SEMESTER MODEL PAPER 2022-23

Subject Code: KMBN-206 Subject Name: Quantitative Techniques for Managers

Faculty Name: Ms. Surbhi Agarwal

1. Attempt all question in brief.

replacement?

A2

2.Attempt any Four of the following:

Time: 90 Minutes Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

What is present worth factor and state its importance in

SECTION-A

1. /100	impt an question in bile.	2A 10 - 2	_0
Q.No	Question	Marks	СО
a.	What is its significance in Simplex method of solving LPP?	2	1
b.	Write the classification of OR models.	2	1
C.	Give the mathematical formulation of an assignment problem.	2	3
d.	Define a saddle point in a game.	2	4
e.	Explain phases of operations research.	2	1
f.	Explain the use of vogel's approximate method?	2	2
g.	State the characteristics of transportation problem.	2	2
h.	What is a rectangular game? Define pure strategy and mixed strategy in a game.	2	4
i.	What are the characteristics of game theory?	2.	4

SECTION-B

Q.No	Question	Marks	CO
a.	Solve the following linear programming problem by simplex	10	1
	method?		
	Maximize Z= $5X_1+3X_2$ subject to constraints $3X_1+5X_2 \le 15$, $5X_1+2X_2$		
	≤ 10 and		
	$X_1, X_2 \geq 0.$		
b.	Find an Optimal solution to following transportation problem:	10	2

	$A_1, A_2 \geq 0.$									
b.	Find an O	Find an Optimal solution to following transportation problem:								
	Origin		De	estination		Supply]			
		A	В	С	D					
	X	2	2	2	1	30]			
	Y	10	8	5	4	70]			
	Z	7	6	6	8	50				
	Demand	40	30	40	40					
C.	State diffe Explain ar			dels used in	operation re	esearch.	10	1		
d.	Use the gra	aphical me	ethod fo	r solving the	following gan	ne and find	10	4		
	the value o	the value of game?								
		Player B								
		В	1	B2	В3	B4				
	A1	2	2	2	3	-2				

3

Expain Techniques of Operation Research & OR Models.

3. Attempt any ONE part of the following:

1x10 = 10	1x	10	=	10	
-----------	----	----	---	----	--

Q.No	Question									Marks	CO
a.	The Cost						•		. 100.	10	5
	Year	1	2	3	4	5	6	7	8		
	mainte nance cost	100	250	400	600	900	1200	1600	200		
b.	Solve the Minimize Subject 1 3x ₁ +x ₂ +3 x ₁ , x ₂ , x ₃	e Z = x- to 2x₁+ x₃≥ 90	ı+3x2+4 -4x2+3x	X 3	•	ic prog	rammin	g:		10	2

4. Attempt any ONE part of the following: 1x

1	.x1	U	=	1	(
	.AI	v	_		

Q.No	Question	Marks	CO
a.	Give the generalized mathematical formulation of an	10	3
	assignment problem. Give a comparative study of		
	transportation problem and assignment problem.		
b.	Define PERT & CPM Technique of Project Management.	10	5

5. Attempt any ONE part of the following:

1	v	1	U	=	1	n
1	А	1	v	_	1	υ

J. Atti	empt any v	ONL part or	the following	ug.			1710 - 1	U
Q.No	Question	n		Marks	CO			
a.	Solve the problem	10	3					
		D1	D2	D3	D4	D5		
	01	4	6	7	5	11		
	02	7	3	6	9	5		
	03	8	5	4	6	9		
	04	9	12	7	11	10		
	05	7	5	9	8	11		
b.				nce in the ame theory		rectangular	10	3

6. Attempt any ONE part of the following:

1x10 = 10

Q.No	Question							Marks	CO
a.	In a factory machine A a minutes are time.	& mach	nine B in c	order AB.	The proce	essing tim		10	4
	Jobs	1	2	3	4	5	6		
	Machine A	7	4	2	5	9	8		
	Machine B	3	8	6	6	4	1		

b.	An Engineering company is offered a material handling equipment	10	5
	A. The machine A is priced at Rs.60, 000 including cost of		
	installation. The costs for operation and maintenance are estimated		
	to be Rs 10, 000 for each of the first five years, increasing every year		
	by Rs 3,000 in the sixth and subsequent years.		
	The company expects a return of 10% on all its investments. What		
	is the optimal replacement period?		