Hi-Tech Institute of Engineering & Technology DEPARTMENT OF ELECTRICAL ENGINEERING

A Has

MODEL PAPER-2CONTROL SYSTEM 2023-24,Semester: FIFTHCourse/Branch: BTECH / EESubject Code:KEE502Subject Name: CONTROL SYSTEMFaculty Name: AAKASH DHAWANTotal Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

Q No.	Question	Marks	CO
a.	What is the difference between gain margin and phase margin?	2	
b.	Explain velocity error coefficient and position error coefficient.	2	
с.	Write a note on stability.	2	
d.	Describe Routh Hurvitz criteria.	2	
e.	How do you check the controllability and observability of the system?	2	
	Explain the process.		
f.	What is the difference between Nyquist Plot and Bode Plot?	2	
g.	Derive the expression of state transition matrix.	2	
h.	Write a note on Bode Plot.	2	
i.	Derive the expression for lag compensation network.	2	
į.	Write description on settling time, peak overshoot and damping.	2	

SECTION B

2. Attempt any three of the following:

		Marks	CO	
Q No.	Question friend flow graph	10		1
a.	Explain the detailed process of signal now graph.	10		1
b.	Obtain the transfer function C/R from the signal flow graph shown in	10		
	fig. $R(S) \longrightarrow \begin{array}{c} -H_{1} & & \partial B \\ \partial 3 & & 34 \\ & & & 96 \\ & & & & 96 \\ & & & & & 96 \\ & & & & & & 96 \\ & & & & & & & & & & \\ & & & & & & & $			
C	Write a note on analogy between electrical and mechanical system.	10		
L.	Describe about synchronous motor and stepper motor in detail.	10		
d .	Describe about synem one and Pip	10		
e.	write a detailed note on Proportional, Derivative, Integral and Pro- controller.	10		

SECTION C

3. Attempt any one part of the following:

Q No.	Question		
a.	Explain time response of first and	Marks	CO
b.	Derive the expression for time were system with unit ramp input.	10	
	unit step input.	10	

4. Attempt any one part of the following:

Q No.	Question		
a.	Derive the expressions for output equation and state	Marks	CO
	model.	10	
b.	Determine the state transition matrix from the given equation: $(\alpha + \beta) = (\alpha + \beta) + ($	10	
	$\begin{bmatrix} x_{i} \\ x_{j} \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ -1 & 8 \end{bmatrix} \begin{bmatrix} \alpha_{i} \\ x_{j} \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix}$		
	$\mathcal{J} = \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$		

5. Attempt any one part of the following:

Q No.	Question		
a.	Derive the expression of transfer for the former	Marks	CO
	check the observability of a control system given by:	10	
L	$ \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 2 & -6 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}, y = \begin{bmatrix} 2 & 4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} $		
D.	Write state model to following differential equation:	10	
	3+2y+3y+5y=64	10	

6. Attempt any one part of the following:

Q No.	Question		
a.	Write state model from the two of a final	Marks	CO
	the state model if one transfer function:	10	
h	$Y(S)/U(S)=2/(S^3+2S^2+4S+1)$		
57	explain lead, lag and lead-lag compensation networks.	10	

7. Attempt any one part of the following:

Q No.	Question		
a.	Determine the range of values of k for the sector is the	Marks	CO
	the range of values of k for the system to be stable.	10	
	 a) S⁴+20ks³+5s²+10s+15=0 b) S³+2ks²+(k+2)s+4=0 		
b.	Write a note on Bode plot, Nyquist plot, Gain manying a last		
	1 <i>y</i> quiet plot, dam margin and phase margin.	10	

AKagS