Hi-Tech Institute of Engineering & Technology

Department Of Computer Science

B.Tech. Subject Code: KCS502

Model Paper

(Sem – V), THEORY EXAMINATION-2023-24,

Subject Name: Compiler Design

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION-A

1. Attempt all question in brief.

2x 10 = 20

Q. No	Question	Marks	CO
a.	What is YACC? Discuss about it.	2	1
b.	Design a DFA for the following regular expression:	2	1
	(x+y)*xyy		
c.	State the problems associated with the top-down parsing.	2	2
d.	Discuss about Shift reducing parsing.	2	2
e.	Find the postfix notation for the following expression:	2	3
	(a+b+c)*(c+q)		
f	What is syntax directed translation (SDT) scheme for case statement?	2	3
g	Write short note on Activation record.	2	4
h	Discuss about has table.	2	4
i	What is an ambiguous grammar? Give example.	2	1
j	What is induction variable?	2	5

SECTION-B

2. Attempt any Three of the following:

10x3 = 30

Q. No	Question	Marks	СО
a.	Construct the LALR parsing table for the given grammar	10	2
	S → BB		
	B → aB/b		
b.	Construct the minimized DFA for the regular expression.	10	1
	(0+1)*(0+1)10		
c.	Eliminate the left recursion from the following grammar	10	2
	$S \rightarrow AB$, $A \rightarrow BS \mid b$, $B \rightarrow SA \mid a$		
d.	Generate three address code for the following code:	10	3
	switch a + b		
	\		
	case 1: $x = x + 1$		
	case 2: y = y + 2		
	case $3 : z = z + 3$		
	default: $c = c - 1$		
	}		
e.	Explain non-recursive predictive parsing. Consider the following grammar and	10	2
	construct the predictive parsing. Table		
	E→TE'		
	$E' \rightarrow +TE' \varepsilon$		
	$T \rightarrow FT'$		
	T' → *FT' ε		
	$F \rightarrow F^* a b$		

3. Attempt any one part of the following:

10x1 = 10

Q.No	Question	Marks	CO
a.	How DAG is different from syntax tree? Construct the DAG for the following	10	2
	basic blocks.		
	a := b + c		
	b := b - d		
	c := c + d		
	e := b + c		
	Also explain the key application of DAG		
b.	Explain the various parameter passing mechanisms of a high level language.	10	2

4. Attempt any one part of the following:

1x10 = 10

Q. No	Question	Marks	CO
a.	i) Check whether given grammar is ambiguous or not. If ambiguous then convert it into unambiguous grammar: E →E + E E*E id	5	2
	ii) Discuss about cross compiler	5	1
b.	Define syntax directed translation. Construct an annotated parse tree for the expression $(4*7+1)*2$, using the simple desk calculator grammar.	10	3

5. Attempt any one part of the following:

1x10 = 10

Q.No	Question	Marks	CO
a.	Write short notes on:	10	5
	i) Global data flow analysis		
	ii) Loop unrolling		
	iii) Loop Jamming		
b.	Distinguish between static scope and dynamic scope. Briefly explain access to	10	2
	non-local names in static scope.		

6. Attempt any one part of the following

Q.No	Question	Marks	CO
a.	Write quadruple, triple and indirect triples for following expression:	10	3
	a = b * - c + b * - c		
b.	Test whether the grammar is LL(1) or not, and construct parsing table for it.	10	2
	$S \rightarrow 1AB _{\epsilon}$		
	$A \rightarrow 1AC 0C$		
	$B \rightarrow 0S$		
	C → 1		

7. Attempt any one part of the following

Q.No	Question	Marks	CO
a.	Explain in detail the error recovery process in operator precedence parsing	10	4
	method.		
b.	Explain what constitute a loop in flow graph and how will you do loop	10	5
	optimizations in code optimization of a compiler.		