Roll No:													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

B.TECH. (SEM- V) THEORY EXAMINATION [MODEL PAPER-1] HEAT AND MASS TRANSFER

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

	SECTION A		AL.
1.	Attempt <i>all</i> questions in brief.	2 x 10 =	= 20
Q no.	Question	Marks	CO
a.	Explain the significance of Thermal Diffusivity.	2	7
b.	How the thermal conductivity of material is defined? What are its units?	2	1
c.	What is meant by transient heat conduction?	2	2
d.	Define effectiveness and efficiency of fin.	2	2
e.	What is the difference between Laminar flow and turbulent flow?	2	3
f.	What is Nusselt No., also write the significance of Nusselt number.	2	3
g.	Define Stefan Boltzmann's law and Kirchhoff's Law.	2	4
h.	Explain black body, opaque body, white body, and grey body also.	2	4
i.	What is Heat Exchanger? Why it is used?	2	5
j.	What are the various modes of mass transfer?	2	5

SECTIONB

2. Attempt any *three* of the following:

	The mpt any white of the fond wing.		
Q no.	Question	Marks	CO
a.	Drive an expression for general heat conduction equation in cylindrical	10	1
	coordinates system.		
b.	It is required to heat oil to about 300°C for frying purpose. A ladle is used	10	2
	in the frying. The section of the handle is 5 mm x 18 mm . the surroundings		
	are at 30°C. The conductivity of the material is 205 W/m°C. If the		
	temperature at a distance of 380 mm from the oil should not reach 40°C ,		
	Determine the convective heat transfer coefficient.		
c.	Differentiate between: -	10	3
	(i) Natural and forced convection.		
	(ii) Hydrodynamic and thermal boundary layer thickness.		
d.	A 70 mm long circular surface of a circular hole of 35 mm diameter	10	4
	maintained at uniform temperature of 250°C. Find the loss of energy to the		
(surroundings at 27°C, assuming the two ends of the hole to be as parallel		
	discs and the metallic surfaces and surroundings have a black body		
	characteristic.		
e,	Derive an expression for effectiveness by NTU method for parallel flow	10	5
	heat exchanger.		

SECTION C

3. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Derive an expression for critical radius of insulation for a cylinder. Give	10	1
	practical example to explain the concept of critical radius		

b.	A mild steel tank of thickness 12 mm contains water at 95°C . The thermal	10	1
	conductivity of mild steel is $50 \text{ W/m}^{\circ}\text{C}$, and the heat transfer coefficients		
	for the inside and outside the tank are 2850 and 10 W/m ² °C, respectively.		
	If the atmospheric temperature is 15 °C, calculate:		
	(i) The rate of heat loss per square meter of the tank surface area.		
	(ii) The temperature of the outside surface of the tank.		

Attempt any ONE questions of the following. Q4

Q no.	Question	Marks	CO
a.	Determine the radiant heat exchanger in W/m ² between two large parallel	10	4
	steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 K and		
	500 K respectively, if a thin copper plate of emissivity 0.1 is introduced		
	as a radiation shield between the two plates.		X
	Use $\sigma_b = 5.67 \text{ x } 10^{-8} \text{ W/ } \text{m}^2 \text{ k}^4$		$\mathbf{\gamma}$
b.	Derive the expression for net heat exchange between black bodies for infinite parallel planes.	10	4
5 A	Attempt any ONE questions of the following.	•	

Q5 Attempt any ONE questions of the following.

Q no.	Question	Marks	CO
a.	Air at 27 °C and 1 atm. Flows over a flat plate at a velocity 3 m/s. The	10	3
	plate is heated over its entire length to a temperature of 70°C . Calculate		
	the heat transferred if the plate length is 45 cm and width is 1 m. Properties		
	of air $v = 17.36 \text{ x } 10^{-6} \text{ m}^2/\text{s}$; k=0.02749 W/m-K, $\mathbb{Q}_p = 1.006 \text{ KJ/kg.K}$,		
	$\mathbf{P}_{r} = 0.7$. Use the following correlation equation.		
	$N_{\rm UL} = 0.664 (Re_{\rm L})^{0.5} Pr^{1/3}$		
b.	Describe briefly the hydraulic and thermal boundary layer over a flat	10	3
	plate when a free stream of fluids flow longitudinally over it and show the		
	respective relations with relevant diagram.		

Attempt any ONE question of the following. **Q6**

Q no.	Question	Marks	CO
a.	An aluminum alloy plate of 400 mm x 400 mm x 4mm size at 200 °C is suddenly quenched into liquid oxygen at -183°C. Starting from fundamentals or deriving the necessary expression to determine the time	10	2
	required for the plate to reach a temperature of -70 °C. Assume $h = 20000 \text{ KJ/m}^2 h ^\circ\text{C}$, $c_p = 0.8 \text{ KJ/Kg} ^\circ\text{C}$ and density = 3000 Kg/m ³ .		
b.	Prove that for a body whose thermal resistance is zero, the temperature required for cooling or heating can be obtained from the relation $(\mathbf{t}-\mathbf{t}_a)/(\mathbf{t}_i-\mathbf{t}_a) = \exp[-\mathbf{B}_i, \mathbf{F}_o]$ Where the symbols have their usual meanings.	10	2

Attempt any ONE question of the following.

Q no.	Question	Marks	CO
a.	A counter flow heat exchanger is used to cool 2000 kg/hr of oil (c_p = 2.5 kJ/kgK) from 105 °C to 30 °C using water at 15 °C . If the overall heat transfer coefficient is expected to be 1.5 kW/m²K , make calculations for the water flow rate, the surface area required and the effectiveness of heat exchanger. Presume that the exit temperature of the water is not to exceed 80 °C . Use NTU-effectiveness approach.	10	5
b.	Discuss various modes of pool boiling with the help of pool with the help of pool boiling curve. List various regimes of forced boiling inside a tube.	10	5