Subject Code:	KME501
---------------	--------

INCOLO INCO.							

B.TECH. (SEM- V) THEORY EXAMINATION [MODEL PAPER-2] HEAT AND MASS TRANSFER

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

	SECTION A		
1.	Attempt <i>all</i> questions in brief.	$2 \ge 10 = 2$	20
Q no.	Question	Marks	<u>C0</u>
a.	Define overall heat transfer coefficient and contact resistance.	2	Ĩ
b.	What is the difference between thermal capacity and thermal diffusivity of materials?	2	1
c.	What do you understand by lumped system? Give one example.	2	2
d.	What is Fin? Why fin installed on surface of Electric motor /Transformer.	2	2
e.	Explain the significance of Biot Number in transient heat conduction	2	3
f.	What is the significance of Reynold's No. (Re) and Grashoff's No./	2	3
g.	What is Kirchhoff's Law? What is the main conclusion of this Law.	2	4
h.	Explain black body, opaque body, white body, and grey body also.	2	4
i.	What is Heat Exchanger? Write full form of LMTD & NTU.	2	5
j.	State Fick's Law of Mass diffusion. Give 1 example of Mass Transfer.	2	5

SECTION B Attempt any *three* of the following: 2.

Q no.	Question	Marks	CO
a.	Drive an expression for general heat conduction equation in cartesian	10	1
	(rectangular) coordinates system with proper assumptions.		
b.	A wall is constructed of several layers. The first layer consists of bricks	10	1
	$(\mathbf{k} = 0.66 \text{ W/mK})$, 25 cm thick, the second layer is 2.5 cm thick mortar		
	(k = 0.7 W/mK), the third layer is 10 cm thick limestone $(k = 0.66)$		
	W/m.K) and outer layer of 1.25 cm thick plaster ($k = 0.7 W/m.K$). The		
	heat transfers co-efficient on interior and exterior of the wall fluid layers		
	is 5.8 W/m ² K and 11.6 W/m ² K, respectively. Find: (i) OAHTC (ii)		
	Overall thermal resistance per m^2 , (iii) Rate of heat transfer per m^2 , if the		
	interior of the room at 26 °C while outer air is at 7 °C.		
с.	What is the significance of Fins? For a fin of rectangular cross section	10	2
	with insulated tip derive the expression for temperature profile and heat		
	transfer rate through that fin with the help of neat sketch.		
d. 🧹	What is radiation shield? Two large plates at temperatures 1000 K and 600	10	4
S	$\mathbf{\hat{K}}$ have emissivity of 0.5 and 0.8 respectively. A radiation shield having		
SY'	emissivity 0.1 on one side and 0.05 on other side is paced between the		
Y	plates. Determine the percentage reduction in heat transfer rate		
e.	Explain working principle of Heat pipe with neat sketch. Discuss pool	10	5
	boiling and explain regimes of pool boiling with the help of diagram		

SECTION C

<u>3</u>. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Calculate the critical radius of insulation for asbestos ($\mathbf{k} = 0.172 \text{ W/m.K}$)	10	1
	surrounding a pipe and exposed to room air at 300 K with $h = 2.8 \text{ W/m}^2\text{K}$		
	Calculate the heat loss from a 475 K & 60 mm diameter pipe when		
	covered with critical radius of insulation and without insulation.		

A plane wall of area 5 m^2 and thickness 10 cm is subjected to one b. 10 1 dimensional heat conduction. Find the heat transfer rate if the surface of wall is at 400 °C and 100 °C and the conductivity of wall varies as follows K = 0.5 (1 + 0.0065 t) where K is in W/m.°C and t is in °C.

Q4 Attempt any ONE questions of the following.

× 110.	Question	Marks	CO
a.	Define Radiation shape factor and Reciprocity theorem. Describe the	10	4
	various rules used in determination of radiation shape factor. Also define		
	\mathbf{F}_{12} and \mathbf{F}_{21} with the help of suitable diagram.		
b.	A small sphere (outside diameter = 60 mm) with a surface temperature of	10	4
	300 °C is located at the geometric centre of a large sphere (inside		
	diameter = 360 mm) with an inner surface temperature of 15 °C .		
	Calculate how much of heat emitted from the large sphere inner surface is	ć	\checkmark
	incident upon the outer surface of the small sphere, assuming that both		V
	surfaces approach black body behavior. What is the net exchange of heat		
	between the two spheres?		

Q5 Attempt any ONE questions of the following.

Q no.	Question	Marks	CO
a.	Draw hydrodynamic and thermal boundary layer over a flat plate. Explain	10	3
	the following dimensionless numbers with their significance. Nusselt		
	Number, Grashoff Number, Prandtl Number and Reynolds No.		
b.	A plate is heated and its temperature is maintained at 60. C. Air at 27 °C	10	3
	and 1 bar flows over this plate at 2.0 m/s velocity. Calculate the heat		
	transferred per hour per unit width up to 400 mm from leading edge of		
	the plate. For air at mean temperature of 43.5 C, TAKE: $v = 17.36 \times 106$		
	$m^{2}/s, k = 0.02749 W/m.^{\circ}C, C_{p} = 1.006 kJ/kg.^{\circ}C, R = 187 Nm/kg.mK$		
	and $Pr = 0.7$. Assume the equation => [Nu = 0.664 (Re ^{1/2}) x (Pr ^{1/3})]		

Attempt any ONE question of the following. Q6

Q no.	Question	Marks	CO
a.	A large aluminum plate of 10 cm thickness is initially at a uniform temperature of 500 °C is suddenly immersed in a liquid at 100 °C with heat transfer coefficient as 1200 W/m ² K. Find: (a) The temperature at the centre line and at the outer Surface of the plate 1 minute after immersion. (b) Time taken by the mid plane to reach a temperature of 300 oC. For Aluminum take: $\alpha = 8.4 \times 10^{-5} \text{ m}^2/\text{s}$.	10	2
	$k = 215 \text{ W/mK}, \rho = 2700 \text{ kg/m}^3 \text{ and } C_p = 900 \text{ kJ/kg.K}$		
b.	Prove that for a body whose thermal resistance is zero, the temperature required for cooling or heating can be obtained from the relation $(t-t_a)/(t_i-t_a) = \exp [\tau / \tau^*]$; where symbol have usual meanings.	10	2

Q7 Attempt any ONE question of the following.

Q no.	Question	Marks	CO
a.	The flow rates of hot and cold-water streams running through a parallel flow heat exchangers are 0.2 Kg/s and 0.5 Kg/s respectively the inlet a temperatures 75° C and 20° C respectively. The exit temperature of hot water is 45° C. If the individual heat transfer coefficient on both sides is 650 W/m ² °C. Calculate: (i) The area of heat exchanger. (ii) the rate of heat transfer	10	5
b.	Derive an expression LMTD for parallel flow heat exchanger & derive an expression of effectiveness for counter flow heat exchanger by using NTU method	10	5