Hi-Tech Institute of Engineering & Technology
DEPARTMENT OF Applied SciencesMODEL QUESTION PAPER, ODD SEMESTER-2023-24,Semester:1stCourse/Branch: B.Tech.Subject Code:BAS103Subject Name: Mathematics -1Faculty Name: Dr. Ashfaq Ahmad, Dr. Vijay Sharma

Time: 3:00 HoursTotal Marks: 100Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION-A

1. Atte	mpt all question in brief.	2x 10 =2	0
Q. No	Question	Marks	CO
a.	Define Leibnitz theorem	2	2
b.	State Green 's Theorem.	2	5
C.	State Duplication formula.	2	4
d.	Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$	2	1
e.	Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$	2	1
f.	Evaluate $\int_{0}^{1} x^{2} (1-x)^{3} dx$.	2	4
g.	Evaluate $\int_0^1 dx \int_0^{x^2} x dy$.	2	4
h.	Show that $\vec{F} = (x^2 - y^2 + x)\hat{i} - (2xy + y)\hat{j}$ is irrotational.	2	5
i.	State Taylor's Theorem.	2	3
j.	Find the Value of $\lceil (-1/2) \rceil$.	2	4

SECTION-B

2. Attempt any three parts of the following:			80
Q. No	Question	Marks	CO
a.	Verify Cayley Hamilton Theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ and hence	10	1
	find A ⁻¹		
b.	If $x^{x}y^{y}z^{z} = c$, show that at $x = y = z$, $\frac{\partial^{2}z}{\partial x \partial y} = -(x \log ex)^{-1}$	10	2
	Verify whether the following functions are functionally dependent, and if		
C.	so find the relation between them $u = \frac{x+y}{1-xy}$, $v = \tan^{-1} x + \tan^{-1} y$	10	3
d.	Show that $\Gamma n \Gamma (1-n) = \frac{\pi}{\sin n\pi}$, $0 < n < 1$	10	4
e.	If $\vec{F} = x^3\hat{i} + y\hat{j} + z\hat{k}$ is the force field. Find the work done by \vec{F} along the line from (1,2,3) to (3,5,7).	10	5

SECTION-C

3. Attempt any ONE part of the following: $1x10 = 10$)	
Q. No	Question	Marks	CO

a.	Find the inverse by elementary row transformation $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$	10	1
b.	Determine for what value λ and μ the following equation x + y + z = 6 x + 2y + 3z = 10 $x + 2y + \lambda z = \mu$ Have (i) No solution (ii) a unique solution (iii) infinite number of solutions.	10	1

4. Attempt any ONE part of the following:

4. Atte	empt any ONE part of the following:	1x10 = 10	
Q. No	Question	Marks	CO
a.	If $y = (\sin^{-1} x)^2$ prove that $(y_n)_0 = \begin{cases} 0 & n \text{ is odd} \\ 2.2^2.4^2.6^2(n-2)^2 & n \text{ is even} \end{cases}$	10	2
b.	If $z = x^2 \tan^{-1} \frac{y}{x} + y^2 \tan^{-1} \frac{x}{y}$ prove that $\frac{\partial^2 z}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$	10	2

5. Attempt any ONE part of the following:

5. Attempt any ONE part of the following:		1x10 = 10	
Q.No	Question	Marks	CO
a.	If u,v,w are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$, cubic in λ , find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$	10	3
b.	A ballon is in the form of right circular cylinder of radius 1.5 m and length 4m and is surmounted by hemispherical ends, if the radius is increased by 0.01 m and the length is 0.05 m, find the percentage change in the volume of the ballon.	10	3

6 Attempt any ONF part of the following:

1v10 - 10

o. Atte	mpt any ONE part of the following:	$1 \times 10 = 1$	10
Q. No	Question	Marks	CO
a.	Prove that $\int_{0}^{\frac{\pi}{2}} \sin^{p} \theta \cos^{q} \theta d\theta = \frac{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{q+1}{2}\right)}{2\Gamma\left(\frac{p+q+2}{2}\right)}$	10	4
b.	Find the mass of an octant of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ the density at any point being $\rho = kxyz$	10	4

7. Attempt any ONE part of the following:

7. Attempt any ONE part of the following:		1x10 = 10	
Q.No	Question	Marks	CO
a.	Prove that $\vec{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidal and irrotational.	10	5
b.	Use the Divergence theorem to evaluate $\iint_{S} xdydz + ydzdx + zdxdy$, where S is the portion of the plane $x + 2y + 3z = 6$ which lies in the first octant.	10	5