Hi-Tech Institute of Engineering \& Technology	
DEPARTMENT OF Applied Sciences	
MODEL QUESTION PAPER, ODD SEMESTER-2023-24,	
Semester: $1^{\text {st }}$	Course/Branch: B.Tech.
Subject Code:BAS103	Subject Name: Mathematics -1
Faculty Name: Dr. Ashfaq Ahmad, Dr. Vijay Sharma	
Time: 3:00 Hours	Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION-A

1. Attempt all question in brief.

Q. No	Question	$\mathbf{2 x 1 0 = 2 0}$	
a.	Define Leibnitz theorem	Marks	CO
b.	State Green 's Theorem.	2	2
c.	State Duplication formula.	2	5
d.	Find the rank of the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 1 & 1\end{array}\right]$	2	4
e.	Find the inverse of the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$	2	1
f.	Evaluate $\int_{0}^{1} x^{2}(1-x)^{3} d x$.	2	1
g.	Evaluate $\int_{0}^{1} d x \int_{0}^{x^{2} x d y .}$	2	4
h.	Show that $\vec{F}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$ is irrotational.	2	4
i.	State Taylor's Theorem.	2	5
j.	Find the Value of $\Gamma(-1 / 2)$.	2	3

SECTION-B
2. Attempt any three parts of the following:

2. Attempt any three parts of the following:		$3 \times 10=30$	
Q. No	Question	Marks	CO
a.	Verify Cayley Hamilton Theorem for the matrix $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$ and hence find A^{-1}	10	1
b.	If $x^{x} y^{y} z^{z}=c$, show that at $x=y=z, \frac{\partial^{2} z}{\partial x \partial y}=-(x \log e x)^{-1}$	10	2
c.	Verify whether the following functions are functionally dependent, and if so find the relation between them $u=\frac{x+y}{1-x y}, v=\tan ^{-1} x+\tan ^{-1} y$	10	3
d.	Show that $\Gamma n \Gamma(1-n)=\frac{\pi}{\sin n \pi}, 0<n<1$	10	4
e.	If $\vec{F}=x^{3} \hat{i}+y \hat{j}+z \hat{k}$ is the force field. Find the work done by \vec{F} along the line from $(1,2,3)$ to $(3,5,7)$.	10	5

SECTION-C

3. Attempt any ONE part of the following: $\quad 1 \times 10=10$
Q. No Question

a.	Find the inverse by elementary row transformation $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$	$\mathbf{1 0}$	$\mathbf{1}$
b.	Determine for what value λ and μ the following equation $x+y+z=6$ $x+2 y+3 z=10$ $x+2 y+\lambda z=\mu$ Have (i) No solution (ii) a unique solution (iii) infinite number of solutions.	$\mathbf{1 0}$	$\mathbf{1}$

4. Attempt any ONE part of the following:
$\mathbf{x 1 0}=10$

Q. No	Question	Marks	CO
a.	If $y=\left(\sin ^{-1} x\right)^{2}$ prove that $\left(y_{n}\right)_{0}=\left\{\begin{array}{cc}0 & n \text { is odd } \\ 2.2^{2} \cdot 4^{2} \cdot 6^{2} \ldots \ldots \ldots(n-2)^{2} & n \text { is even }\end{array}\right.$	$\mathbf{1 0}$	$\mathbf{2}$
b.	If $z=x^{2} \tan ^{-1} \frac{y}{x}+y^{2} \tan ^{-1} \frac{x}{y}$ prove that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$	$\mathbf{1 0}$	$\mathbf{2}$

5. Attempt any ONE part of the following:
$1 \times 10=10$

Q.No	Question	Marks	CO
a.	If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are the roots of $(\lambda-x)^{3}+(\lambda-y)^{3}+(\lambda-z)^{3}=0$, cubic in λ, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$	$\mathbf{1 0}$	3
b.	A ballon is in the form of right circular cylinder of radius 1.5 m and length 4m and is surmounted by hemispherical ends, if the radius is increased by 0.01 m and the length is 0.05 m, find the percentage change in the volume of the ballon.	$\mathbf{1 0}$	3

6. Attempt any ONE part of the following:
$1 \times 10=10$

Q. No	Question	Marks	CO
a.	Prove that $\int_{0}^{\pi / 2} \sin ^{p} \theta \cos ^{q} \theta d \theta=\frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{q+1}{2}\right)}{2 \Gamma\left(\frac{p+q+2}{2}\right)}$	$\mathbf{1 0}$	$\mathbf{4}$
b.	Find the mass of an octant of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ the density at any point being $\rho=k x y z$	$\mathbf{1 0}$	$\mathbf{4}$

7. Attempt any ONE part of the following: $\quad \mathbf{1 \times 1 0}=10$

Q.No	Question	Marks	CO
a.	Prove that $\vec{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{i}+(3 x z+2 x y) \hat{j}+(3 x y-2 x z+2 z) \hat{k}$ is both solenoidal and irrotational.	$\mathbf{1 0}$	$\mathbf{5}$
b.	Use the Divergence theorem to evaluate $\iint_{S} x d y d z+y d z d x+z d x d y$, where \boldsymbol{S} is the portion of the plane $x+2 y+3 z=6$ which lies in the first octant.	$\mathbf{1 0}$	$\mathbf{5}$

