Hi-Tech Institute of Engineering & Technology			
DEPARTMENT OF APPLIED SCIENCES			
MODEL TEST PAPER, ODD SEMESTER-2023-24			
Semester: B.Tech Ist year, I semester	Course/Branch: Sec A/B/C/D/E/F (All Branches)		
Subject Code: BAS 103	Subject Name: Engineering Mathematics I		
Faculty Name: Dr. Neenu Gupta, Mr. Vijay Kumar Sharma, Dr. Ashfaq Ahmed			
Time: 3:00 Hours	Total Marks: 70		

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION-A

1. Attempt all question in brief.

2x7 = 14

Q.No	Question	Marks	CO
a.	Find the eigen value of $A^3 - 2A + I$ where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$	2	1
b.	Prove that the matrix $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$ is unitary matrix	2	1
C.	If $y = \sin(m \sin^{-1} x)$ then show that $(1 - x^2)y_2 - xy_1 + m^2 y = 0$	2	2
d.	If $V = (2x - 3y, 3y - 4z, 4z - 2x)$, compute the value of $6V_x + 4V_y + 3V_z$	2	2
e.	An error of 2% is made in measuring length and breadth then find the percentage error in the area of the rectangle.	2	3
f.	Change the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} f(x, y) dy dx$	2	4
g.	Find the velocity potential ϕ , such that $\nabla \phi = (y \sin z - \sin x)\hat{i} + (x \sin z + 2yz)\hat{j} + (xy \cos z + y^2)\hat{k}$	2	5

SECTION-B

2. Attempt any THREE part of the following:

3x7 =21

Q.No	Question	Marks	CO
a.	Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find its inverse.	7	1
b.	If $y = e^{a\cos^{-1}x}$, then show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$. Also find $y_n(0)$	7	2
C.	Obtain Taylor's expansion of $\tan^{-1} \frac{y}{x}$ about (1,1)upon and including the second degree terms. Hence compute $f(1.1,0.9)$	7	3
d.	Using the transformation $x + y = u$ and $y = uv$, show that $\iint [xy(1-x-y)]^{\frac{1}{2}} dx dy = \frac{2\pi}{105}$, integration being taken over the area of triangle bounded by the lines $x = 0$, $y = 0$, $x + y = 1$	7	4

e.	Verify Stoke's theorem for $\vec{F} = (y - z + 2)\hat{i} + (yz + 4)\hat{j} - xz\hat{k}$ over the surface of the cube $x = 0$, $y = 0$, $z = 0$, $x = 2$, $y = 2$, $z = 2$ in above XOY	7	5
	plane.		
SECTION-C			

SECTION-C

3. Attempt any ONE part of the following:

1x7 = 7

Q.No	Question	Marks	CO
	For what value of k , the equations		
	x + y + z = 1		
a.	2x + y + 4z = k	7	1
	$4x + y + 10z = k^2$		
	Have a solution and solve them completely in each case.		
	Find the eigen values and corresponding eigen vectors of the matrix A		
	$\begin{bmatrix} -17 & 18 & -6 \end{bmatrix}$		
b.	$A = \begin{vmatrix} -18 & 19 & -6 \end{vmatrix}$	7	1

4. Attempt any ONE part of the following:

1x7 = 7

Q.No	Question	Marks	CO
a.	If $u = \sin^{-1} \left(\frac{x^{\frac{1}{3}} + y^{\frac{1}{3}}}{x^{\frac{1}{2}} + y^{\frac{1}{2}}} \right)^{\frac{1}{2}}$, Show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial z^2} = \frac{\tan u}{144} (13 + \tan^2 u)$	7	2
b.	Trace the curve $y^{2}(a+x) = x^{2}(3a-x)$	7	2

5. Attempt any ONE part of the following:

1x7 = 7

Q.No	Question	Marks	CO
a.	If $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_1 x_3}{x_2}$, $y_3 = \frac{x_2 x_1}{x_3}$ then evaluate $\frac{\partial(x_1, x_2, x_3)}{\partial(y_1, y_2, y_3)}$	7	3
b.	Find the dimension of rectangular box, without top of maximum capacity whose surface area is 108 sq. cm.	7	3

6. Attempt any ONE part of the following:

1x7 = 7

Q.No	Question	Marks	CO
a.	Find the volume of the region bounded by the surface $y = x^2$, $x = y^2$ and	7	4
	the plane $z = 0$, $z = 4$		4
b.	Show that $\iiint \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}} = \frac{\pi^2}{8}$ the integral being extended to all	7	4
	positive values for which the expression is real.		

7. Attempt any ONE part of the following:

1x7 = 7

Q.No	Question	Marks	CO
a.	Find the directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at the point	7	5
	$P(2,1,3)$ in the direction of the vector $\vec{\alpha} = \hat{i} - 2\hat{k}$		
b.	Verify Gauss Divergence theorem for $\vec{F} = (2x - z)\hat{i} + x^2 y\hat{j} - xz^2 \hat{k}$ taken	7	F
	over the rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$		3