Hi-Tech Institute of Engineering \& Technology	
DEPARTMENT OF APPLIED SCIENCES	
MODEL TEST PAPER, ODD SEMESTER-2023-24	
Semester: B.Tech Ist year, I semester	Course/Branch: Sec A/B/C/D/E/F (All Branches)
Subject Code: BAS 103	Subject Name: Engineering Mathematics I
Faculty Name: Dr. Neenu Gupta, Mr. Vijay Kumar Sharma, Dr. Ashfaq Ahmed	
Time: 3:00 Hours	Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION-A

1. Attempt all question in brief.
$2 \mathrm{x} 7=14$

Q.No	Question	Marks	CO
a.	Find the eigen value of $A^{3}-2 A+I$ where $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$	$\mathbf{2}$	$\mathbf{1}$
b.	Prove that the matrix $A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is unitary matrix	$\mathbf{2}$	$\mathbf{1}$
c.	If $y=\sin \left(m \sin ^{-1} x\right)$ then show that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$	$\mathbf{2}$	$\mathbf{2}$
d.	If $V=(2 x-3 y, 3 y-4 z, 4 z-2 x)$, compute the value of $6 V_{x}+4 V_{y}+3 V_{z}$	$\mathbf{2}$	$\mathbf{2}$
e.	An error of 2% is made in measuring length and breadth then find the percentage error in the area of the rectangle.	$\mathbf{2}$	$\mathbf{3}$
f.	Change the order of integration $\int_{0}^{12-x} \int_{x^{2}} f(x, y) d y d x$	$\mathbf{2}$	$\mathbf{4}$
g.	Find the velocity potential $\phi, \operatorname{such}$ that $\nabla \phi=(y \sin z-\sin x) \hat{i}+(x \sin z+2 y z) \hat{j}+\left(x y \cos z+y^{2}\right) \hat{k}$	$\mathbf{2}$	$\mathbf{5}$

SECTION-B

2. Attempt any THREE part of the following:
$3 \times 7=21$

Q.No	Question	Marks	CO
a.	Verify Cayley Hamilton theorem for the matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ find its inverse.	and hence	$\mathbf{7}$
b.	If $y=e^{a \cos ^{-1} x}$, then show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$. Also find $y_{n}(0)$	$\mathbf{7}$	$\mathbf{2}$
c.	Obtain Taylor's expansion of $\tan ^{-1} \frac{y}{x}$ about $(1,1)$ upon and including the second degree terms. Hence compute $f(1.1,0.9)$	$\mathbf{7}$	$\mathbf{3}$
d.	Using the transformation $x+y=u$ and $y=u v$, show that $\iint[x y(1-x-y)]^{1 / 2} d x d y=\frac{2 \pi}{105}$, integration being taken over the area of triangle bounded by the lines $x=0, y=0, x+y=1$	$\mathbf{7}$	$\mathbf{4}$

e.	Verify Stoke's theorem for $\vec{F}=(y-z+2) \hat{i}+(y z+4) \hat{j}-x z \hat{k}$ over the surface of the cube $x=0, y=0, z=0, x=2, y=2, z=2$ in above XOY plane.	$\mathbf{7}$	$\mathbf{5}$

SECTION-C

3. Attempt any ONE part of the following:

$$
1 \times 7=7
$$

Q.No	Question	Marks	CO
a.	For what value of \mathbf{k}, the equations $x+y+z=1$ $2 x+y+4 z=k$ $4 x+y+10 z=k^{2}$ Have a solution and solve them completely in each case.		
b.	Find the eigen values and corresponding eigen vectors of the matrix A $A=\left[\begin{array}{ccc}-17 & 18 & -6 \\ -18 & 19 & -6 \\ -9 & 9 & 2\end{array}\right]$	$\mathbf{1}$	

4. Attempt any ONE part of the following:

$$
1 \times 7=7
$$

Q.No	Question	Marks	CO
a.	If $u=\sin ^{-1}\left(\frac{x^{1 / 3}+y^{1 / 3}}{x^{1 / 2}+y^{1 / 2}}\right)^{1 / 2}$, Show that		
	$x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial z^{2}}=\frac{\tan u}{144}\left(13+\tan ^{2} u\right)$	7	2
b.	Trace the curve $y^{2}(a+x)=x^{2}(3 a-x)$		

5. Attempt any ONE part of the following:

$$
1 \times 7=7
$$

Q.No	Question	Marks	CO
a.	If $y_{1}=\frac{x_{2} x_{3}}{x_{1}}, y_{2}=\frac{x_{1} x_{3}}{x_{2}}, y_{3}=\frac{x_{2} x_{1}}{x_{3}}$ then evaluate $\frac{\partial\left(x_{1}, x_{2}, x_{3}\right)}{\partial\left(y_{1}, y_{2}, y_{3}\right)}$	7	3
b.	Find the dimension of rectangular box, without top of maximum capacity whose surface area is 108 sq. cm.	7	3

6. Attempt any ONE part of the following:
$1 \mathrm{x} 7=7$

Q.No	Question	Marks	CO
a.	Find the volume of the region bounded by the surface $y=x^{2}, x=y^{2}$ and the plane $z=0, z=4$	7	4
b.	Show that $\iiint \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}=\frac{\pi^{2}}{8}$ the integral being extended to all positive values for which the expression is real.	7	4

Q.No	Question	Marks	CO
a.	Find the directional derivative of $f(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$ at the point $P(2,1,3)$ in the direction of the vector $\vec{\alpha}=\hat{i}-2 \hat{k}$	$\mathbf{7}$	$\mathbf{5}$
b.	Verify Gauss Divergence theorem for $\vec{F}=(2 x-z) \hat{i}+x^{2} y \hat{j}-x z^{2} \hat{k}$ taken over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$	$\mathbf{7}$	$\mathbf{5}$

